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Abstract
We give a simple derivation of all n-point densities for the eigenvalues of the
real Ginibre ensemble with even dimension N as quaternion determinants. A
very simple symplectic kernel governs both the real and complex correlations.
One- and two-point correlations are discussed in more detail. Scaling forms
for large dimension N are derived.

PACS numbers: 02.50.−r, 05.40.−a, 75.10.Nr

1. Introduction

More than 40 years ago Ginibre [1] proposed three types of general Gaussian non-Hermitian
matrix ensembles, those with complex, quaternion real and real entries. While he already gave
the joint probability density (jpd) of eigenvalues and correlations for the first two cases, the
last case was harder to solve. It started with the presentation of the jpd by Lehmann and the
author 25 years later [2]. Edelman rederived the jpd and determined the density of complex
eigenvalues in 1997 [3]. In more recent publications Kanzieper and Akemann presented the
complex correlations as Pfaffians [4], Sinclair derived a generating Pfaffian functional [5]
and finally Forrester and Nagao were able to determine the real and complex correlations as
Pfaffians with the help of orthogonal polynomials [6]. The last step should be considered
as the solution of the problem of correlations of the real Ginibre ensemble. Here we give
an alternative simple derivation and the generalization to arbitrary real, complex or crossed
correlations.

In this paper, we present the general n-point densities, all entries real or complex, as
quaternion determinant governed by the simple kernel

KN(z, z′) = z − z′

2
√

2π

N−2∑
n=0

(zz′)n

n!
. (1)

We restrict ourselves to even dimension N. This is the only place where the matrix dimension
N occurs. The power expansion of (1) generates the inverse of an N-dimensional submatrix
(1 � k, l � N) of the infinite-dimensional matrix

Akl =
∫

d2z1

∫
d2z2 F(z1, z2)z

k−1
1 zl−1

2 , (2)
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where F(z1, z2) is a skew-symmetric complex measure reflecting the symplectic structure of
the real Ginibre ensemble. A simple argument without the use of orthogonal polynomials
yields equation (1) directly. Furthermore, we discuss the properties of one- and two-point
functions in more detail.

The real asymmetric Gaussian ensemble has many applications in physics and social
sciences as biological webs [7], neural networks [8], directed quantum chaos [9] and financial
markets [10]. The probability density of matrices Jij (1 � i, j � N) we are talking about in
this paper is simply proportional to exp

(− ∑
ij J 2

ij

/
2
)
. And the eigenvalues zi of the matrix

Jij are the zeros of the characteristic polynomial det(Jij − z) = 0, and therefore real or
pairwise complex conjugate.

2. Symplectic structure

We start with the joint probability density of eigenvalues for the real Ginibre ensemble derived
by Lehmann and Sommers [2] and calculate from it a generating functional for correlation
functions [5, 6]:

Z[f ] =
∫

d2z1 · · · d2zNP (z1, z2, . . . , zN)f (z1) · · · f (zN). (3)

P contains
[

N
2

]
+ 1 pieces with R real eigenvalues (0 � R � N) and Q = (N −R)/2 complex

conjugate pairs in a chosen order. We extend here for convenience the eigenvalues to complex
values, zk = xk + iyk . Thus for real eigenvalues, z = xk, P (· · ·) is concentrated on the real
axis, yk = 0. Afterwards we may symmetrize P(z1, z2, . . . , zN) with respect to all
permutations of zk and integrate all variables zk over the whole complex plane dividing
the result by N !. P(· · ·) is proportional to the Vandermonde determinant∏

i>j

(zi − zj ) = det
(
zk−1

1 , . . . , zk−1
N

)
, (4)

which has a definite sign for the chosen order. Using the method of alternating variables [12]
we may then integrate out (3) and obtain a Pfaffian. The simplest way to derive it is using
Grassmannians, see the discussion at the end of this paper. For even N the result is

Z[f ] = N Pfaff (Ãkl) = N
√

det(Ãkl) (5)

with a skew-symmetric matrix

Ãkl =
∫

d2z1 d2z2f (z1)f (z2)F(z1, z2)z
k−1
1 zl−1

2 , (6)

where F(z1, z2) is a skew-symmetric function (F(z1, z2) = −F(z2, z1)) of two complex
variables z1, z2

F(z1, z2) = e−(z2
1+z2

2)/2[2iδ2(z1 − z̄2){�(y1) erfc(y1

√
2)

−�(y2) erfc(y2

√
2)} + δ(y1)δ(y2)(�(x2 − x1) − �(x1 − x2))]. (7)

N is a normalization constant, which can be restored afterwards. It is related to the volume of
the real orthogonal group [2]. Actually the variables z1, z2 are considered here as two-
dimensional real vectors. This symplectic measure reveals two contributions, one from
the real axis with y1 = y2 = 0 and one from the complex plane off the real axis with
δ2(z1 − z̄2) = δ(x1 − x2)δ(y1 + y2). The step functions �(· · ·) reflect the chosen order of
eigenvalues. Functional derivatives of Z[f ] with respect to f (z) at f ≡ 1 give immediately
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all n-point densities

R1(z1) = δZ[f ]

δf (z1)

∣∣∣∣
f ≡1

, R2(z1, z2) = δ2Z[f ]

δf (z1)δf (z2)

∣∣∣∣
f ≡1

, . . . (8)

Equations (3)–(7) are completely equivalent to the joined density of eigenvalues obtained by
Lehmann and Sommers [2] and rederived by Edelman [3]. We will use them to calculate
the correlation functions (or n-point densities, which should be distinguished from connected
correlations).

From (5) we obtain

δZ[f ]

δf (z1)
= Z[f ]

∫
d2z2 f (z2)F(z1, z2)K̃(z2, z1) (9)

with the kernel

K̃(z2, z1) =
1...N∑
k,l

Ã−1
kl zk−1

2 zl−1
1 . (10)

At f ≡ 1 we have Ãkl = Akl, K̃(z2, z1) = K(z2, z1) and Z[1] = 1. Thus

R1(z1) =
∫

d2z2 F(z1, z2)K(z2, z1). (11)

R1(z1) contains two independent parts, one on the real axis and one in the complex plane.
Comparing the latter with Edelman’s expression for the density in the complex plane (not
on the real axis) [3], we obtain (since zk and the complex conjugate z̄k can be considered as
independent variables)

K(z2, z1) = z2 − z1

2
√

2π

N−2∑
n=0

(z1z2)
n

n!
=

1...N∑
k,l

A−1
kl zk−1

2 zl−1
1 . (12)

Thus, remarkably, the inverse N-dimensional skew-symmetric matrix A−1
kl has a very simple

tridiagonal form, and the bulk part and the real-axis part of the complex density R1(z) are
intimately related via the kernel K(z2, z1). Equation (12) can independently be checked by
calculating A−1

kl directly from (6) and (7). Now, not only we recover Edelman’s bulk part of
R1(z) [3], but we also obtain the density on the real axis first obtained by Edelman, Kostlan
and Shub [11]

R1(z) = RC
1 (z) + δ(y)RR

1 (x) (13)

with

RC
1 (z) = e−(x2−y2) 2

√
2

π

∫ ∞

|y|√2
du e−u2 |y|

N−2∑
n=0

|z|2n

n!
(14)

and

RR
1 (x) =

∫ +∞

−∞

dx ′|x − x ′|
2
√

2π
e−(x2+x ′2)/2

N−2∑
n=0

(xx ′)n

n!
(15)

Writing

e−xx ′
N−2∑
n=0

(xx ′)n

n!
=

∫ ∞

xx ′
du e−u uN−2

(N − 2)!
(16)

we see that expression (15) is positive for even N � 2 for which it was derived. For odd
N there is a correction term, which ensures positivity. Equation (16) makes it easy to derive
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large N-expansions by saddle-point integration. The simplest results for large N are the Girko
circle law [13, 14]

RC
1 (z) � 1

π
�(

√
N − |z|) (17)

and a constant density on the real axis [6]

RR
1 (x) � 1√

2π
�(

√
N − |x|). (18)

This is in contrast to the semicircle density for a Gaussian Hermitian matrix (Wigner semicircle
law). A new type of behaviour is expected near the edge. The average number of real
eigenvalues NR(N) is in agreement with Edelman [3]

NR(N) = 1 +

√
2

π

∫ 1

0

dt t1/2(1 − tN−1)

(1 − t)3/2(1 + t)
�

√
2N

π
(19)

For calculating the next correlation functions one has to take functional derivatives of (9) for
which we use

δK̃(z2, z1) =
∫

d2z3δf (z3)

∫
d2z4f (z4)F(z3, z4)

× [K̃(z2, z4)K̃(z3, z1) − K̃(z2, z3)K̃(z4, z1)]. (20)

This equation is enough to generate all higher functional derivatives. Equation (20) implies
for the two-point density

R2(z1, z2) = F(z1, z2)K(z2, z1) +
∫

d2z3

∫
d2z4F(z1, z3)F(z2, z4)

×{K(z3, z1)K(z4, z2) + K(z3, z4)K(z2, z1) − K(z3, z2)K(z4, z1)}. (21)

At the end of this paper we will write this as a quaternion determinant.

3. Two-point densities

Let us single out in R2(z1, z2) the nonsingular bulk part RC
2 (z1, z2) that contains no

δ-contributions and describes correlations in the complex plane off the real axis [4]

RC
2 (z1, z2) = 4 sgn(y1) erfc(|y1|

√
2) sgn(y2) erfc(|y2|

√
2)

× e−(z2
1+z̄2

1+z2
2+z̄2

2)/2{−K(z̄1, z1)K(z̄2, z2)

−K(z̄1, z̄2)K(z2, z1) + K(z̄1, z2)K(z̄2, z1)}. (22)

For small z1, z2 this behaves as 16|y1y2|
(
x2

1 + x2
2

)
> 0. For (z1, z̄1) → (z2, z̄2) the correlation

RC
2 (z1, z2) behaves ∝ |z1 − z2|2. On the other hand, the most singular part of R2(z1, z2)

on the real axis is δ(y1)δ(y2)R
R
2 (x1, x2) where RR

2 (x1, x2) describes the correlations of real
eigenvalues and is given by

RR
2 (x1, x2) = e−(x2

1 +x2
2 )/2

{
sgn(x2 − x1)K(x2, x1)

+
∫

dx3

∫
dx4 e−(x2

3 +x2
4 )/2 sgn(x3 − x1) sgn(x4 − x2)

× [K(x3, x1)K(x4, x2) + K(x3, x4)K(x2, x1) − K(x3, x2)K(x4, x1)]

}
. (23)

Both expressions (22) and (23) are contained in results of [6]. We proceed now to derive
scaling forms of the correlations in the large-N limit. Since the densities (17) and (18) in the
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complex plane and on the real axis are constant, the scaled correlation functions are simply
obtained by taking the N → ∞ limit of equation (12)

K(z2, z1) � z2 − z1

2
√

2π
ez1z2 . (24)

Obviously the symplectic measure function F(z1, z2) (7) does not depend on N. This implies
for the one-point densities

RC
1 (z) �

√
2

π
e2y2 |y| erfc(|y|

√
2) (25)

and

RR
1 (x) � 1√

2π
. (26)

Both are independent of x and only for |y| � 1, i.e. far from the real axis, RC
1 (z) goes to

(17) . This is generally valid: far from the real axis the correlations go to Ginibre’s (i.e. the
Ginibre ensemble for general complex matrices [1]). For example, the bulk part RC

2 (z1, z2) of
the two-point correlation function for large N is given by

RC
2 (z1, z2) � RC

1 (z1)R
C
1 (z2)

1

4y1y2

{
4y1y2 + ((x1 − x2)

2 + (y1 − y2)
2) e−(x1−x2)

2−(y1+y2)
2

− ((x1 − x2)
2 + (y1 + y2)

2) e−(x1−x2)
2−(y1−y2)

2}
. (27)

Far from the real axis only the Ginibre result

RC
2 (z1, z2) � 1

π2

(
1 − e−|z1−z2|2) (28)

survives. Finally we compute the asymptotic form of the real two-point correlations

RR
2 (x1, x2) � 1

2π

(
1 − e−(x1−x2)

2)
+

|x1 − x2|
2
√

2π
e− (x1−x2)2

2 erfc

( |x1 − x2|√
2

)
. (29)

This is different from Wigner–Dyson correlations, but shows β = 1 level repulsion. For
small distances we have RR

2 (x1, x2) � |x1−x2|
2
√

2π
and for large distances we have RR

2 (x1, x2) �
1

2π

(
1 − e−(x1−x2)2

(x1−x2)2

)
, a much faster decay of connected correlations than for the Gaussian

orthogonal ensemble (GOE), more similar to those for the Ginibre ensemble in the complex
plane.

4. n-point densities

Finally we observe that the correlation (20) can be written as a quaternion determinant of a
self-dual matrix (related to a Pfaffian of a skew-symmetric matrix) and can be generalized for
n-point densities (k, l = 1, 2, . . . , n)

Rn(z1, . . . , zn) = Qdet

[∫
d2zF(zk, z)K(z, zl) K(zk, zl)

−F̃(zk, zl)
∫

d2z K(zk, z)F(z, zl)

]
(30)

with

F̃(z1, z2) = F(z1, z2) −
∫

d2z d2z′F(z1, z)K(z, z′)F(z′, z2). (31)

The sign of the quaternion determinant is given by the diagonal elements R1(z1), . . . , Rn(zn)

(see (11)). The term R1(z1) · R2(z2) · · · Rn(zn) appearing in the expansion of the quaternion
determinant just gives the asymptotics of Rn(z1, . . . , zn) for large separation.
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For an alternative derivation one may write the generating functional Z[1 + u] as a
Gaussian integral over Grassmannians ζ

Z[1 + u] =
∫

Dζ exp

(
−1

2

∫
d2z

∫
d2z′ξ(z)ξ(z′)F(z, z′)(1 + u(z))(1 + u(z′))

)
(32)

with Grassmannian fields ξ(z) with 〈ξ(z)ξ(z′)〉u=0 = K(z, z′) and expand Z[1 + u] using the
fermionic Wick theorem to obtain all correlation functions. The entries in (30) are the building
elements of the diagrammatic expansion. A similar expansion for the quaternion determinants
proves the claim (30). One crucial point is that although the quaternion determinant is a square
root, it is an analytic function of the entries.

5. Conclusion

In conclusion, without the use of orthogonal polynomials we have given a transparent
derivation of the correlations for the real Ginibre ensemble, which are governed by one
simple symplectic kernel K(z, z′) describing a deep connection between real and complex
correlations. Real eigenvalues, which meet at a point on the real axis, continue to move along
the imaginary direction repelling each other without changing the real coefficients of their
characteristic polynomial. Calculations have been done for even N. The algebra for odd N
is more complicated. However one may conjecture that the n-point densities for odd N can
be obtained by analytic continuation from even N preserving positivity. Moreover we have
discussed some properties of one- and two-point functions in detail. Many further properties
can be discussed in future.

After completing most of this paper, I have seen some recent papers [4–6], where many of
the results reported here are partly contained. However, this paper contains in addition some
generalizations and tries to make transparent the beauty of the structure of the real Ginibre
ensemble, which may also be useful in many fields of sciences.
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